

"Trend"-y Tweet Classification!

Motivation

We were wondering, "What in the world do people tweet about?!?

Spoiler: Mostly Entertainment and Sports...

Understanding what's happening

We wanted to analyze this further and <u>find the correlation among the popular content</u>.

Backend + DevOps

System Architecture

System Architecture

NAMESPACE	NAME	READY	STATUS	RESTART
cassandra	cassandra-0	2/2	Running	0
cassandra	cassandra-1	2/2	Running	0
cassandra	spark-master-controller-8s7bk	1/1	Running	0
default	realtime-classifier-847745fb6c-8j2fh	1/1	Running	0
default	realtime-classifier-847745fb6c-cg6ld	1/1	Running	0
default	realtime-classifier-847745fb6c-fh7n6	1/1	Running	0
default	realtime-classifier-847745fb6c-mdwcr	1/1	Running	0
default	trend-puller-qjgmn	1/1	Running	0
default	tweet-api-7fb7df4d8f-k6ddw	1/1	Running	0
default	tweet-puller-7cfdd9c6bf-bdj5g	1/1	Running	0
default	tweet-puller-7cfdd9c6bf-skxtz	1/1	Running	0
kafka	kafka-0	1/1	Running	2
kafka	kafka-1	1/1	Running	0
kafka	zoo-0	1/1	Running	0
kafka	zoo-1	1/1	Running	0
kafka	zoo-2	1/1	Running	2
kube-system	dns-controller-5cbcd846f9-d6nd6	1/1	Running	0
kube-system	etcd-server-events-ip-172-20-61-203.us-west-2.compute.internal	1/1	Running	0
kube-system	etcd-server-ip-172-20-61-203.us-west-2.compute.internal	1/1	Running	0
kube-system	kube-apiserver-ip-172-20-61-203.us-west-2.compute.internal	1/1	Running	1
kube-system	kube-controller-manager-ip-172-20-61-203.us-west-2.compute.internal	1/1	Running	0
kube-system	kube-dns-7f56f9f8c7-d2xxw	3/3	Running	0
kube-system	kube-dns-7f56f9f8c7-dh552	3/3	Running	0
kube-system	kube-dns-autoscaler-f4c47db64-nlbb8	1/1	Running	2
kube-system	kube-proxy-ip-172-20-41-122.us-west-2.compute.internal	1/1	Running	0
kube-system	kube-proxy-ip-172-20-44-118.us-west-2.compute.internal	1/1	Running	0
kube-system	kube-proxy-ip-172-20-47-130.us-west-2.compute.internal	1/1	Running	2
kube-system	kube-proxy-ip-172-20-51-9.us-west-2.compute.internal	1/1	Running	0
kube-system	kube-proxy-ip-172-20-61-203.us-west-2.compute.internal	1/1	Running	0
kube-system	kube-scheduler-ip-172-20-61-203.us-west-2.compute.internal	1/1	Running	0

Focus on scalability

System Architecture details

- System details:
 - Kubernetes v1.8.7
 - Deployed with Kops for AWS
- Kubernetes Nodes
 - Master: 1 EC2 t2.medium instance
 - Nodes: 4 EC2 t2.small instances
- AWS:
 - 2x 100GB EBS (for Cassandra Storage)
 - Elastic Load Balancer to balance if needed to add more APIs servers
- Classifies ~6K tweets/min
- GitHub pages CDN auto-deployment

Machine Learning

Classification

Topic Classification

Classifying tweets into the following categories:

- Sports
- Politics
- Technology
- Mood
- Entertainment

Sentiment Classification - Joy, Sadness, Anger, Neutral.

Workflow

- Pre-processing
 - a. Cleaning Data with regex
 - b. Removing twitter specific stop words
 - c. Monkey trend labeling
- 2. Model
 - a. Naive Bayes bag of words model
 - b. Suitable for real time pipeline
- 3. Trend Classification
 - Based on majority classification of it's tweets
- 4. Results/Accuracy
 - a. Precision and recall ~ 93%
 - b. 6k classifications per minute

Infrastructure

- Batch Processing - Spark-mllib

Frontend

Background Map

Map - created with Mapbox (customized URL) and Leaflet. ClusterPies, Marker Cluster, D3.

- Tweets by Topic: C3 Chart
- A D3-based reusable chart library
- Present bar chart of most popular tweets

- Trends by Topic: Bootstrap Badges
- Displays hottest tweets by each trend

- Sentiment Analysis
- Emojis for each tweet on map
- Description...if needed...will be added.

- Trend Similarity: D3 Network Graph
- Clustering Trends with
 Doc2Vec and
 Clauset Algorithm
 - Professor Aaron Clauset's Algorithm

Issues we struggled upon

- Spark job deployment
- Deploying Kubernetes in AWS is not easy
- D3 learning curve
- Difficulties to label data
 - Non-existent labeled data
 - Tweets are sometimes ambiguous

Future Work

Thank You!

